基于高分辨率CT征象建立logistic回归模型对IA期肺腺癌高级别模式的预测价值

董浩, 邱勇刚, 汪鑫斌, 杨俊杰, 楼存诚, 叶晓丹

  1. 1.杭州市萧山区第一人民医院放射科,浙江 杭州 311200
    2.杭州市萧山区第一人民医院病理科,浙江 杭州 311200
    3.复旦大学附属中山医院放射科,上海 200032
    4.上海医学影像研究所,上海 200032
    5.复旦大学附属中山医院肿瘤中心,上海 200032
  • 收稿日期:2023-02-03 修回日期:2023-05-12 出版日期:2023-08-30 发布日期:2023-09-01
  • 通信作者: 叶晓丹 E-mail:yuanyxd@163.com;yuanyxd@163.com.
  • 作者简介:董 浩(ORCID: 0000-0003-3345-5506),硕士研究生在读。
  • 基金资助:
    国家自然科学基金(81571629);国家自然科学基金(82071990);上海市科学技术委员会项目(19411965200);浙江省医药卫生科技计划项目(2023RC252);杭州市农业与社会发展科研引导项目(20220919Y078);杭州市萧山区社会发展重大科技计划政策引导项目(2021309)

摘要/Abstract

摘要:

背景与目的:研究表明,当存在高级别组织学模式(微乳头状和实体模式)时,肺腺癌患者的预后明显较差,往往需要更积极的治疗方式,术前确定浸润性肺腺癌中是否存在任何高级别模式(high-grade pattern,HGP)可以帮助预测患者的预后并确定治疗策略。本研究旨在建立基于高分辨率计算机体层成像(computed tomography,CT)征象的logistic回归模型预测ⅠA期肺腺癌的HGP。方法:回顾性分析经病理学检查证实为ⅠA期肺腺癌的443例患者(445个病灶)的临床、病理学及影像学资料。根据病理学检查结果有无HGP将445个病灶分成两组:HGP组(n=88个)和非HGP(non-HGP,n-HGP)组(n=357个)。患者的临床病理学资料包括年龄、性别、吸烟史、肿瘤位置、分期及病理生长方式等。CT 影像学上观察病灶大小、密度、形状、毛刺征、分叶征、空泡征、空气支气管征、胸膜凹陷征等。两组间定量参数比较采用Mann-Whitney U检验,计数资料采用χ2检验或Fisher确切概率法。采用单因素结合多因素logistic回归分析筛选独立预测因子,并根据多因素logistic回归分析结果分别构建临床模型、CT模型及临床-CT模型,模型间诊断效能的比较采用Delong检验。结果:单因素分析中HGP组与n-HGP组之间年龄、性别、吸烟史、肿瘤大小、密度、形状、毛刺、分叶征、胸膜牵拉差异有统计学意义(P<0.05),多因素logistic 回归分析结果显示肿瘤大小(P = 0.040;OR = 1.063,95% CI:1.003 ~ 1.126)、密度(P<0.001;OR = 8.249,95% CI:4.244 ~ 16.034)、分叶征(P = 0.001;OR = 3.101,95% CI:1.598 ~ 6.021)是HGP的独立预测因素,临床模型、CT模型、临床-CT模型预测HGP的曲线下面积(area under curve,AUC)值分别为0.634、0.838及0.834。结论:肿瘤大小、密度与分叶征是ⅠA期肺腺癌HGP的独立预测因子。基于高分辨率CT征象的logistic回归模型具有较好的诊断效能,可以为临床诊断及制订外科治疗方案提供一定的参考依据。

关键词: 肺腺癌, 高级别模式, 预测模型, 高分辨率CT

Abstract:

Background and purpose: Studies have shown that when high-grade histological patterns (micropapillary and solid patterns) are present, patients with lung adenocarcinoma have a significantly poorer prognosis and often require more aggressive treatment modalities, and preoperative determination of the presence of any high-grade patterns (HGP) in invasive lung adenocarcinoma can help predict patient prognosis and determine treatment strategies. The aim of the study was to establish a logistic regression model based on high-resolution CT signs to predict the HGP of stage ⅠA lung adenocarcinoma. Methods: The clinical, pathological and imaging data of 443 patients (445 lesions) with stage ⅠA lung adenocarcinoma confirmed by pathology diagnosis from First People's Hospital of Xiaoshan District (Oct. 2018 to Mar. 2021) and Zhongshan Hospital of Fudan University (Jan. 2018 to Dec. 2020) were retrospectively analyzed. The 445 lesions were divided into two groups according to the presence or absence of HGP in pathological findings: HGP (n=88) and non-HGP (n-HGP) (n=357). The clinical and pathological data of the patients included age, gender, smoking history, tumor location, stage and pathological growth pattern. On CT imaging, the size, density, shape, burr sign, lobulation sign, vacuole sign, air bronchus sign and pleural depression sign were observed. Mann-Whitney U test was used to compare quantitative parameters between the two groups, and χ2 test or Fisher's exact test was used for enumeration of data. The independent predictors were screened by univariate combined with multivariate logistic regression analysis, and the clinical model, CT model and clinical-CT model were constructed according to the results of multivariate logistic regression analysis. DeLong test was used to compare the diagnostic efficacy between models. Results: In the univariate analysis, there were significant differences in age, gender, smoking history, tumor size, density, shape, burr, lobulation sign and pleural traction between the HGP group and the n-HGP group (P<0.05). Multivariate logistic regression analysis showed tumor size (P=0.04; OR=1.063, 95% CI: 1.003-1.126), density (P<0.001; OR=8.249, 95% CI: 4.244-16.034), lobulation sign (P=0.001; OR=3.101, 95% CI: 1.598-6.021) were independent predictors of HGP, and the area under curve (AUC) values of clinical model, CT model and clinical-CT model for predicting HGP were 0.634, 0.838 and 0.834, respectively. Conclusion: Tumor size, density and lobulation sign are independent predictors of HGP in stage ⅠA lung adenocarcinoma. The logistic regression model based on high-resolution CT signs has good diagnostic performance and can provide a certain reference for clinical diagnosis and surgical treatment.

Key words: Lung adenocarcinoma, High-grade pattern, Prediction model, High-resolution CT

中图分类号: 

相关文章

[1] 贾利晴, 葛小路, 姜琳, 周晓燕. LncRNA PKD2-2-3对肺腺癌细胞增殖、克隆形成、迁移及侵袭能力的影响[J]. 中国癌症杂志, 2023, 33(8): 717-725.
[2] 刘晓丽, 柴文君, 孙磊, 闫明霞, 潘洪玉, 孙跃喜. 肺腺癌中可变剪接调控因子KHSRP调控的差异剪接基因分析[J]. 中国癌症杂志, 2023, 33(7): 637-645.
[3] 杨闻箫, 国琳玮, 凌泓, 胡欣. 基于免疫微环境特征的曲妥珠单抗与免疫治疗联合应用预测模型[J]. 中国癌症杂志, 2023, 33(5): 484-498.
[4] 陈瑛瑶, 储香玲, 俞昕, 苏春霞. 免疫检查点抑制剂疗效相关预测模型的研究进展[J]. 中国癌症杂志, 2023, 33(1): 61-70.
[5] 许宇辰, 程蕾蕾, 王妍, 林瑾仪, 陈佳慧, 陈怡帆, 周宇红, 刘天舒, 葛均波. sST2在免疫检查点抑制剂相关不良反应风险预测中的价值[J]. 中国癌症杂志, 2022, 32(8): 712-718.
[6] 穆佳倩, 滕小艳, 魏丽荣, 仇荣, 桂鹏程, 杜玉珍. 整合素β3在肺腺癌骨转移中的作用及应用价值[J]. 中国癌症杂志, 2022, 32(4): 351-356.
[7] 朱海鹏, 胡军, 姜敏, 蔡若南, 王俊巧, 李莉. GOLM1调控PI3K/AKT/mTOR信号转导通路促进肺腺癌细胞增殖、侵袭和迁移的机制研究[J]. 中国癌症杂志, 2022, 32(3): 207-217.
[8] 侯清华, 钟燕凤, 刘林壮, 吴柳盛, 刘继先. CBX3在肺腺癌中的表达、预后相关性及对癌细胞生物学行为的影响[J]. 中国癌症杂志, 2022, 32(2): 152-160.
[9] 张龙富, 刘洁, 倪筝, 路新源, 胡斌, 汪灏, 冯明祥, 张勇. 构建并验证nomogram模型预测ⅠA期肺腺癌肺泡间转移[J]. 中国癌症杂志, 2022, 32(12): 1210-1217.
[10] 胡冠男, 陈 雷, 周良平, 周正荣 . 肺恶性黑色素瘤合并肺腺癌1例并文献复习[J]. 中国癌症杂志, 2021, 31(7): 647-650.
[11] 胡雅琼, 白 俊, 陈 琳, 陈新璐, 张丽萍, 周丹丹, 王 玉, 尹崇高, 李洪利, 刘雨清 . miR-625-5p通过靶向调控PRKACA促进肺腺癌细胞的增殖和侵袭[J]. 中国癌症杂志, 2021, 31(6): 447-454.
[12] 彭子珊, 孔 辉, 鲍 真, 赵红杏, 刘 鑫, 卢韶华. 83例多发肺腺癌患者的临床病理学特征分析[J]. 中国癌症杂志, 2021, 31(5): 408-418.
[13] 施茂林, 柏玉娣, 王 超, 李思琪, 周代君, 彭晶晶, 孙非凡, 李 东, 张 涛 . PD-L1表达对晚期肺腺癌患者培美曲塞化疗效果的影响及其机制[J]. 中国癌症杂志, 2021, 31(4): 308-316.
[14] 曾 峰, 李 丹, 邵鑫鑫, 张能英, 陈星翰, 程晓明 . 基于SEER数据库构建1~2枚淋巴结阳性且乳房全切的老年早期乳腺癌患者不同腋窝手术方式的生存预测模型[J]. 中国癌症杂志, 2021, 31(4): 323-329.
[15] 王晓栋 , 周丹丹 , 张丽萍 , 郑 荃 , 牟青杰 , 尹崇高 , 李洪利 . FAM83A在肺腺癌组织中高表达且促进肺腺癌细胞的侵袭和转移[J]. 中国癌症杂志, 2020, 30(8): 586-592.