SIRT3通过去乙酰化YME1L1诱导乳腺癌内分泌治疗耐药的作用机制研究

董涧桥, 李坤艳, 李菁, 王斌, 王艳红, 贾红燕

  1. 1.山西医科大学,山西 太原 030000
    2.山西医科大学第一医院乳腺科,山西 太原 030000
    3.山西医科大学基础学院,山西 太原 030000
  • 收稿日期:2024-03-07 修回日期:2024-06-07 出版日期:2024-06-30 发布日期:2024-07-16
  • 通信作者: 贾红燕 E-mail:swallow_jhy@163.com
  • 作者简介:董涧桥(ORCID:0009-0006-3358-741X),硕士研究生在读。
  • 基金资助:
    山西省自然科学基金(201901D111347)

摘要/Abstract

摘要:

目的:沉默调节蛋白家族(sirtuins,SIRT)是一类以烟酰胺腺嘌呤二核苷酸(NAD+)为辅酶的第Ⅲ类组蛋白去乙酰化酶。YME1样三磷酸腺苷酶(YME1 like 1 ATPase,YME1L1)对于维持线粒体形态、功能和可塑性至关重要。视神经萎缩相关蛋白 1(optic atrophy 1,OPA1)主要介导线粒体融合。本研究拟探索乳腺癌内分泌治疗耐药中SIRT3的表达变化, SIRT3与YME1L1、OPA1之间的关系及在乳腺癌内分泌治疗耐药中的作用机制。方法:使用4-羟基他莫昔芬(4-hydroxytamoxifen)诱导耐他莫昔芬(tamoxifen,TAM)的MCF-7/TAM。采用细胞计数试剂盒(cell counting kit-8,CCK-8)检测细胞增殖能力,验证耐药性。采用透射电镜和免疫荧光染色(immunofluorescence staining,IF)实验观察线粒体形态。通过实时荧光定量聚合酶链反应(real-time fluorescence quantitative polymerase chain reaction,RTFQ-PCR)、蛋白质印迹法(Western blot)检测SIRT3、OPA1的基因表达和蛋白水平。采用JC-1染色检测线粒体膜电位,采用二氢乙啶(dihydroethidium,DHE)染色检测活性氧,验证线粒体功能。采用RNA干扰技术在耐药细胞中敲低SIRT3,采用过表达质粒在亲本细胞中过表达SIRT3及YME1L1基因野生型(wild type,WT)、模拟乙酰化状态突变型(mutant,MUT K237Q)、模拟去乙酰化状态突变型(MUT K237R)。采用免疫沉淀技术(immunoprecipitation assay,IP)及IF分析SIRT3与YME1L1之间的相互作用。结果:RTFQ-PCR及Western blot检测结果显示,SIRT3在耐药细胞中的表达显著高于亲本细胞。在亲本细胞中过表达SIRT3,乳腺癌细胞对TAM的敏感性出现下降。在耐药细胞中敲低SIRT3,耐药细胞对TAM的敏感性增强。DHE染色结果显示,在相同浓度的TAM处理下,耐药细胞中ROS水平低于亲本细胞;透射电镜及IF结果显示,相较于亲本细胞,耐药细胞的线粒体伸长;Western blot检测结果显示,耐药细胞L-OPA1蛋白表达水平高于亲本细胞。在亲本细胞中过表达SIRT3,线粒体功能增强,其形态较对照组更长;此外,L-OPA1表达上调;而在耐药细胞中敲低SIRT3后,得到相反结果。为了进一步验证SIRT3如何调控OPA1蛋白,影响线粒体的形态及功能,促进乳腺癌耐药,我们在亲本细胞中过表达YME1L1(野生型及突变型质粒),结果显示,过表达模拟去乙酰化状态的YME1L1与过表达SIRT3结果相似,过表达乙酰化状态的YME1L1得到与敲低SIRT3相似的结果。IP实验证实,SIRT3与YME1L1在乳腺癌细胞中存在相互作用;在SIRT3不同表达水平下,YME1L1乙酰化水平不同。IF实验显示,在MCF-7细胞中YME1L1与SIRT3存在共定位。结论:SIRT3在耐TAM的乳腺癌细胞中高表达。SIRT3通过去乙酰化YME1L1上调L-OPA1表达,进而促使线粒体融合并增强线粒体功能,促进乳腺癌对TAM耐药。

关键词: 乳腺癌, 内分泌耐药, SIRT3, YME1L1, OPA1

Abstract:

Background and purpose: Silent information regulator proteins (sirtuins, SIRT) are a class Ⅲ histone deacetylases with nicotinamide adenine dinucleotide (NAD+) as coenzyme. YME1 like 1 ATPase (YME1L1) is essential for the maintenance of mitochondrial morphology, function and plasticity. Optic atrophy 1 (OPA1) mainly mediates mitochondrial fusion. The aim of this study was to explore the expression of SIRT3 in the endocrine resistance of breast cancer, the relationship between SIRT3 and YME1L1 and OPA1, and the mechanism of SIRT3 in the endocrine resistance of breast cancer. Methods: 4-hydroxytamoxifen was used to induce tamoxifen-resistant MCF-7/TAM cells. cell counting kit-8 (CCK-8) was used to detect cell proliferation and verify drug resistance. The mitochondrial morphology was observed by transmission electron microscopy (TEM) and immunofluorescence staining. The expressions of SIRT3 and OPA1 were detected by real-time fluorescent quantitative polymerase chain reaction (RTFQ-PCR) and Western blot. JC-1 staining was used to detect mitochondrial membrane potential, and dihydroethidium (DHE) staining was used to detect reactive oxygen species (ROS) to verify mitochondrial function. SIRT3 was knocked down in drug-resistant cells by RNA interference, and SIRT3 and YME1L1 wild type (WT), simulated acetylation state mutant (MUT K237Q), and simulated deacetylation state mutant (MUT K237R) were overexpressed in parental cells by overexpression plasmid. Immunoprecipitation assay (IP) and immunofluorescence (IF) were used to verify the interaction between SIRT3 and YME1L1. Results: RTFQ-PCR and Western blot results showed that SIRT3 gene expression and protein level was significantly higher in drug-resistant cells than in parental cells. Overexpression of SIRT3 in parental cells decreased the sensitivity of breast cancer cells to tamoxifen. Knockdown of SIRT3 in drug-resistant cells enhanced the sensitivity of drug-resistant cells to tamoxifen. DHE staining showed that the ROS level was lower in tamoxifen resistant cells than in parental cells at the same concentration. Transmission electron microscopy and fluorescence staining showed that the mitochondria of the drug-resistant cells were elongated compared with the parental cells. Western blot results showed that the expression level of L-OPA1 protein was higher in drug-resistant cells than in parental cells. Overexpression of SIRT3 in the parental cells resulted in enhanced mitochondrial function and longer mitochondrial morphology compared with the control cells. Western blot showed that the expression of L-OPA1 was upregulated. When SIRT3 was knocked down in drug-resistant cells, the opposite result was obtained. We further verified how SIRT3 regulated OPA1 protein, affected the morphology and function of mitochondria, and promoted drug resistance of breast cancer. Overexpression of YME1L1 (wild-type and mutant plasmids) in parental cells showed that overexpression of YME1L1 in the simulated deacetylation state resulted in similar results as overexpression of SIRT3, and overexpression of YME1L1 in the acetylated state resulted in similar results as knockdown of SIRT3. IP assay confirmed the interaction between SIRT3 and YME1L1 in breast cancer cells. The acetylation level of YME1L1 was different at different SIRT3 expression levels. IF assay showed that YME1L1 was co-localized with SIRT3 in MCF-7 cells. Conclusion: SIRT3 is highly expressed in tamoxifen-resistant breast cancer cells. SIRT3 upregulates L-OPA1 expression by deacetylating YME1L1, thereby promoting mitochondrial fusion and enhancing mitochondrial function, and promotes tamoxifen resistance in breast cancer.

Key words: Breast cancer, Endocrine resistance, SIRT3, YME1L1, OPA1

中图分类号: 

相关文章

[1] 郝弦, 黄建军, 杨文秀, 刘晋廷, 张军红, 罗钰蓓, 李青, 王大红, 高玉炜, 谭福云, 薄莉, 郑羽, 王荣, 冯江龙, 李静, 赵春华, 豆晓伟. 乳腺癌原代细胞系为药物筛选和基础研究提供癌症新模型[J]. 中国癌症杂志, 2024, 34(6): 561-570.
[2] 中国抗癌协会乳腺癌专业委员会. 中国早期乳腺癌卵巢功能抑制临床应用专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(3): 316-333.
[3] 张琪, 修秉虬, 吴炅. 2023年中国乳腺癌重要临床研究成果及最新进展[J]. 中国癌症杂志, 2024, 34(2): 135-142.
[4] 张思源, 江泽飞. 2023年改变晚期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 143-150.
[5] 王昭卜, 黎星, 于鑫淼, 金锋. 2023年改变早期乳腺癌临床实践的重要研究成果及进展[J]. 中国癌症杂志, 2024, 34(2): 151-160.
[6] 罗扬, 孙涛, 邵志敏, 崔久嵬, 潘跃银, 张清媛, 程颖, 李惠平, 杨燕, 叶长生, 于国华, 王京芬, 刘运江, 刘新兰, 周宇红, 柏玉举, 谷元廷, 王晓稼, 徐兵河, 宋礼华. AK-HER2与参照药治疗HER2阳性转移性乳腺癌患者的疗效、体内代谢特征、安全性和免疫原性比较:一项多中心、随机、双盲Ⅲ期等效性临床试验[J]. 中国癌症杂志, 2024, 34(2): 161-175.
[7] 陈远香, 余涛, 杨诗雨, 曾涛, 魏兰, 张彦. KDM4A通过下调BMP9促进乳腺癌细胞MDA-MB-231的迁移和侵袭[J]. 中国癌症杂志, 2024, 34(2): 176-184.
[8] 胡晓钰, 蔡毓文, 叶富贵, 邵志敏, 胡伟刚, 余科达. BRCA1/2胚系突变对三阴性乳腺癌患者放疗后第二原发肿瘤的影响[J]. 中国癌症杂志, 2024, 34(2): 185-190.
[9] 金奕滋, 林明曦, 张剑. 乳腺癌原发灶与肝转移灶受体表达差异研究[J]. 中国癌症杂志, 2023, 33(9): 834-843.
[10] 杨忠毅, 许晓平, 王明伟, 张勇平, 杨建伟, 陈跃, 徐文贵, 李亚明, 章英剑, 宋少莉. 乳腺癌18F-FES雌激素受体PET技术和应用标准[J]. 中国癌症杂志, 2023, 33(8): 801-808.
[11] 王若曦, 吉芃, 龚悦, 陈盛. HER2低表达乳腺癌新辅助化疗效果及其预后特征:一项单中心回顾性研究[J]. 中国癌症杂志, 2023, 33(7): 686-692.
[12] 邬思雨, 李俊杰, 邵志敏. 乳腺癌前哨淋巴结活检术的发展历史及研究进展[J]. 中国癌症杂志, 2023, 33(6): 551-559.
[13] 毕钊, 王永胜. 1~2枚前哨淋巴结阳性早期乳腺癌患者治疗策略降阶梯新理念[J]. 中国癌症杂志, 2023, 33(6): 560-565.
[14] 赵谦, 凌云霄, 柳光宇. 乳腺癌患者保乳手术后再次前哨淋巴结活检的最新研究进展及展望[J]. 中国癌症杂志, 2023, 33(6): 566-573.
[15] 丛斌斌, 曹晓珊, 王春建, 邱鹏飞, 孙晓, 陈鹏, 刘雁冰, 赵桐, 张朝蓬, 石志强, 毕钊, 王永胜. 临床查体阴性但超声检查及穿刺确诊腋窝淋巴结转移的乳腺癌前哨淋巴结活检的可行性分析[J]. 中国癌症杂志, 2023, 33(6): 574-580.