基于CT的影像组学诺模图预测结直肠癌肺转移射频消融后的局部肿瘤进展

黄浩哲, 陈红, 郑德重, 陈超, 王英, 许立超, 王耀辉, 何新红, 杨媛媛, 李文涛

  1. 1.复旦大学附属肿瘤医院介入治疗科,复旦大学上海医学院肿瘤学系,上海 200032
    2.上海交通大学医学院附属第六人民医院核医学科,上海 200233
    3.中国科学院上海技术物理研究所医学影像实验室,上海 200083
  • 收稿日期:2024-05-07 修回日期:2024-06-13 出版日期:2024-09-30 发布日期:2024-10-11
  • 通信作者: 李文涛
  • 作者简介:黄浩哲(ORCID:0000-0001-6765-5931),博士,主治医师。
    共同第一作者:陈红(ORCID:0000-0002-7873-7980),博士在读,主治医师。
  • 基金资助:
    上海市抗癌协会“雏鹰”计划(SACA-CY23B03)

摘要/Abstract

摘要:

背景与目的: 早期预测结直肠癌(colorectal cancer,CRC)肺转移瘤经过射频消融(radiofrequency ablation,RFA)治疗后的局部肿瘤无进展生存期(local tumor progression-free survival,LTPFS)具有重要的临床意义。影像组学在肿瘤预后预测方面已有一定的探索。本研究旨在构建基于影像组学的诺模图预测CRC肺转移患者RFA治疗后的LTPFS。方法: 本研究回顾性分析2016年8月—2019年1月复旦大学附属肿瘤医院介入治疗科收治的172例伴有401个肺转移病灶的CRC患者。本研究通过复旦大学附属肿瘤医院医学伦理委员会的审查(伦理编号:2402291-24)。将患者的RFA术前及术后即刻计算机体层成像(computed tomography,CT)图像通过数据增强后,人工分割靶病灶和RFA后区域后提取影像组学特征。采用最大相关最小冗余算法(maximum relevance and minimum redundancy algorithm,MRMRA)和最小绝对值收敛(least absolute shrinkage and selection operator,LASSO)回归模型进行特征筛选。基于筛选后的影像组学特征和多因素分析筛选的临床变量,分别构建临床模型、影像组学模型和融合模型。计算一致性指数(concordance index,C-index)和受试者工作特征(receiver operating characteristic,ROC)曲线的曲线下面积(area under curve,AUC)来评估3种模型的预测性能,最后绘制最佳模型对应的诺模图。 结果: 在所有肺转移瘤中,最终复发的病灶有102个(25.4%),完全缓解(complete response,CR)的病灶有299个(74.6%)。中位随访时间为21个月(95% CI:19.466 ~ 22.534),RFA术后的1、2和3年的LTPFS率分别为76.5%(95% CI:72.0 ~ 80.4)、72.1%(95% CI:66.6 ~ 76.9)和69.9%(95% CI:64.0 ~ 75.1)。无论在训练集还是测试集中,基于LASSO回归模型最终筛选的12个影像组学特征和多因素分析筛选的4个临床变量而构建的融合模型预测LTPFS的AUC最高,C-index分别为0.890(95% CI:0.854 ~ 0.927)和0.843(95% CI:0.768 ~ 0.916)。结论: 基于影像组学特征和临床变量的融合模型预测CRC肺转移患者RFA治疗后的LTPFS是可行的,并且其性能优于单一影像组学模型和临床模型。同时,融合模型的诺模图可以更直观地预测CRC肺转移患者RFA治疗的预后,协助临床医师为患者制订个体化的随访复查方案,灵活地调整治疗策略。

关键词: 计算机断层扫描, 影像组学, 诺模图, 结直肠癌, 肺转移, 射频消融

Abstract:

Background and Purpose: The early prediction of local tumor progression-free survival (LTPFS) after radiofrequency ablation (RFA) for colorectal cancer (CRC) lung metastases has significant clinical importance. The application of radiomics in the prediction of tumor prognosis has been explored. This study aimed to construct a radiomics-based nomogram for predicting LTPFS after RFA in CRC patients with lung metastases. Methods: This study retrospectively analyzed 172 CRC patients with 401 lung metastases admitted to Department of Interventional Radiology, Fudan University Shanghai Cancer Center from August 2016 to January 2019. This study was reviewed by the medical ethics committee of Fudan University Shanghai Cancer Center (ethics number: 2402291-24). After augmentation of pre-ablation and immediate post-ablation computed tomography (CT) images, the target metastases and ablation regions were segmented manually to extract the radiomic features. Maximum relevance and minimum redundancy algorithm (MRMRA) and least absolute shrinkage and selection operator (LASSO) regression models were applied for feature selection. The clinical model, the radiomics model, and the fusion model were constructed based on the selected radiomic features and clinical variables screened by the multivariate analysis. The Harrell concordance index (C-index) and area under receiver operating characteristic (ROC) curves (AUC) were calculated to evaluate the prediction performance. Finally, the corresponding nomogram of the best model was drawn. Results: Among all the lung metastases, 102 (25.4%) had final recurrence, and 299 (74.6%) had complete response (CR). The median follow-up time was 21 months (95% CI: 19.466-22.534), and the LTPFS rates at 1, 2, and 3 years after RFA were 76.5% (95% CI: 72.0-80.4), 72.1% (95% CI: 66.6-76.9) and 69.9% (95% CI: 64.0-75.1). In both the training and test dataset, the fusion model based on the final 12 radiomic features through the LASSO regression and 4 clinical variables screened by multivariate analysis achieved the highest AUC values for LTPFS, with C-index values of 0.890 (95% CI: 0.854-0.927) and 0.843 (95% CI: 0.768-0.916), respectively. Conclusion: The fusion model based on radiomic features and clinical variables is feasible for predicting LTPFS after RFA of CRC patients with lung metastases, whose performance is superior to the single radiomic and clinical model. At the same time, the nomogram of the fusion model can intuitively predict the prognosis of CRC patients with lung metastases after RFA, thus assisting clinicians in developing individualized follow-up review plans for patients and adjusting treatment strategies flexibly.

Key words: Computed tomography, Radiomics, Nomogram, Colorectal cancer, Lung metastases, Radiofrequency ablation

中图分类号: 

相关文章

[1] 葛祖荫, 宋坤, 林云霄, 钟烨凌, 郝敬铎. 循环肿瘤细胞FCGBP和BIGH3作为结直肠癌潜在生物标志物的可行性研究[J]. 中国癌症杂志, 2024, 34(8): 745-752.
[2] 翁俊勇, 叶紫岚, 张若昕, 刘琪, 李心翔. 探究不良病理学特征数量对Ⅰ~Ⅲ期结直肠癌复发风险分层的指导作用:对9 875例病例的回顾性队例研究[J]. 中国癌症杂志, 2024, 34(6): 527-536.
[3] 唐楠, 黄慧霞, 刘晓健. 利用单细胞测序和转录组测序建立结直肠癌免疫细胞的9基因预后模型[J]. 中国癌症杂志, 2024, 34(6): 548-560.
[4] 张若昕, 叶紫岚, 翁俊勇, 李心翔. 高龄与Ⅱ期结直肠癌患者预后不良的相关性研究[J]. 中国癌症杂志, 2024, 34(5): 485-492.
[5] 陆悦, 卢仁泉, 张杰, 郑慧. 联合凝血功能指标在结直肠癌患者化疗后高凝状态监测中的应用价值[J]. 中国癌症杂志, 2024, 34(3): 278-285.
[6] 刘琪, 常才, 李佳伟. 乳腺导管原位癌的影像学表现与分子分型、组织病理学分级及预后相关性的研究进展[J]. 中国癌症杂志, 2024, 34(2): 201-209.
[7] 上海市抗癌协会大肠癌专业委员会. 结直肠癌早筛、早诊、早治上海方案(2023年版)[J]. 中国癌症杂志, 2024, 34(1): 13-66.
[8] 杨梓怡, 顾丙新, 许晓平, 宋少莉. 18F-FDG和68Ga-FAPI PET/CT在不同恶性肿瘤肺转移诊断中的对比研究[J]. 中国癌症杂志, 2023, 33(9): 829-833.
[9] 周聪, 何丽娜, 成小姣, 黄廷磊, 涂水平. RSPO3抑制体内结直肠癌移植瘤生长和增加NK细胞浸润的作用研究[J]. 中国癌症杂志, 2023, 33(7): 664-672.
[10] 冶俊玲, 郑小影, 郭新建, 陈瑞慧, 杨柳, 苟笑丹, 蒋汉梅. LncRNA SNHG5/miR-26a-5p/MTDH信号轴促进结直肠癌转移的机制研究[J]. 中国癌症杂志, 2023, 33(7): 673-685.
[11] 蔡家洛, 朱锐秋, 李森, 曹亦军, 黄坊. 炎症癌相关成纤维细胞介导结直肠癌细胞耐药的机制研究[J]. 中国癌症杂志, 2023, 33(12): 1065-1072.
[12] 岳铭, 王理伟, 崔玖洁. 胰腺癌器官特异性肺转移机制的研究进展[J]. 中国癌症杂志, 2023, 33(11): 1026-1031.
[13] 傅圆圆, 侯润萍, 傅小龙. 基于胸部CT预测早期非小细胞肺癌淋巴道或血道转移风险的研究进展[J]. 中国癌症杂志, 2022, 32(4): 343-350.
[14] 陈玺, 曾晓颖, 陈佳艳, 刘菲, 唐曦. 错配修复蛋白联合血清肿瘤标志物与Ki-67增殖指数对结直肠癌预后的临床价值[J]. 中国癌症杂志, 2022, 32(3): 243-250.
[15] 王宏博, 杨业发, 葛乃建. 肝外胆管癌的介入治疗现状与展望[J]. 中国癌症杂志, 2022, 32(2): 118-124.