基于MRI的影像组学和深度学习模型构建:无创鉴别原发颅内弥漫大B细胞淋巴瘤分子亚型

曾延玮, 徐智坚, 曹鑫, 吕锟, 李惠明, 高敏, 居胜红, 刘军, 耿道颖

  1. 1.复旦大学附属华山医院放射科,上海 200040
    2.上海脑重大疾病智能影像工程技术研究中心,上海 200040
    3.复旦大学医学功能与分子影像研究所,上海 200040
    4.复旦大学工程与应用技术研究院,上海 200433
    5.东南大学附属中大医院放射科,江苏 南京 210009
    6.中南大学湘雅二医院放射科,湖南 长沙 410011
  • 收稿日期:2025-05-06 修回日期:2025-06-13 出版日期:2025-08-30 发布日期:2025-09-10
  • 通信作者: 耿道颖
  • 作者简介:曾延玮(ORCID: 0000-0002-0014-2661),博士研究生在读。
  • 基金资助:
    国家自然科学基金(82372048);上海市科学技术委员会项目(23S31904100)

摘要/Abstract

摘要:

背景与目的:弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)的生发中心B细胞样(germinal center B-cell-like,GCB)亚型和非GCB(non-GCB)亚型在患者预后和治疗上存在差异,但目前依赖有创病理学检查。本研究基于多参数MRI构建影像组学和深度学习模型,旨在于术前无创性区分这两种亚型。方法: 本研究回顾性分析2013年3月—2024年12月在复旦大学附属华山医院及外院经病理学检查确诊的DLBCL患者。使用多参数MRI扫描数据,结合4种影像组学机器学习[支持向量机(support vector machine,SVM)、逻辑回归(logistic regression,LR)、高斯过程(Gaussian process,GP)和朴素贝叶斯(Naive Bayes,NB)]和3种深度学习[密集连接卷积网络121(densely-connected convolutional networks 121,DenseNet121)、残差网络101(residual network 101,ResNet101)和高效网络B5(EfficientNet-b5)]建立DLBCL亚型分类模型。此外,两名经验不同的放射科医师在盲法下基于MRI图像独立分类DLBCL。模型和医师的诊断性能均通过接收者操作特征曲线下面积(area under the curve,AUC)、准确度(accuracy,ACC)和F1分数(F1-score,F1)等指标进行量化评估,以衡量其区分GCB和non-GCB亚型的能力。本研究经复旦大学附属华山医院伦理委员会批准(KY2024-663),所有患者均知情同意。结果: 本研究共纳入173例患者(GCB型55例,non-GCB型118例)。影像组学和深度学习方法能有效地区分DLBCL亚型。其中,GP影像组学模型(基于T1-CE+T2-FLAIR+ADC序列)和DenseNet121深度学习模型(基于T1-CE+T2-FLAIR+ADC序列)表现最佳,在内部验证集上分别取得优异性能(GP: AUC=0.900,ACC=0.896,F1=0.840;DenseNet121: AUC=0.846,ACC=0.854,F1=0.774),并在外部验证集上保持稳健。并且,最优AI模型的分类效能优于经验丰富的放射科医师(医师最高AUC=0.678)。结论: 基于多参数MRI特征的影像组学与深度学习模型可有效地鉴别DLBCL的GCB与non-GCB亚型。其中,GP与DenseNet121模型在处理复杂图像数据、特别是融合多序列特征组进行亚型分类时,呈现出优异的性能。

关键词: 弥漫大B细胞淋巴瘤, 生发中心B细胞样, 非GCB, 影像组学, 深度学习

Abstract:

Background and purpose: Diffuse large B-cell lymphoma (DLBCL) is subclassified into germinal center B-cell-like (GCB) and non-GCB subtypes, which differ in prognosis and treatment response. However, current distinction still relies on invasive pathological assays. This study developed radiomics and deep-learning models based on multiparametric magnetic resonance imaging (MRI) to non-invasively differentiate the two subtypes preoperatively, thereby reducing dependence on histopathological examination. Methods: This study retrospectively included patients with pathologically confirmed DLBCL diagnosed at Huashan Hospital, Fudan University, and other institutions between March 2013 and December 2024. Using multiparametric MRI data, we developed DLBCL-subtype classification models that combined 4 radiomics-based machine-learning algorithms: support vector machine (SVM), logistic regression (LR), Gaussian process (GP) and Naive Bayes (NB), with 3 deep-learning architectures [densely-connected convolutional networks 121 (DenseNet121), residual network 101 (ResNet101) and EfficientNet-b5]. Additionally, two radiologists with different experience levels independently classified DLBCL on MRI in a blinded fashion. Model and radiologist performance were quantified using the area under the receiver operating characteristic curve (AUC), accuracy (ACC), and F1-score to evaluate their ability to distinguish GCB from non-GCB subtypes. This study was approved by the Ethics Committee of Huashan Hospital of Fudan University (No. KY2024-663), and all patients signed informed consents. Results: A total of 173 patients were enrolled (55 with GCB subtype and 118 with non-GCB subtype). Radiomics and deep learning methods effectively distinguished DLBCL subtypes. Among these, the GP radiomics model (based on T1-CE+T2-FLAIR+ADC sequences) and DenseNet121 deep learning model (based on T1-CE+T2-FLAIR+ADC sequences) demonstrated optimal performance. Both achieved excellent results on the internal validation set (GP: AUC=0.900, ACC=0.896, F1=0.840; DenseNet121: AUC=0.846, ACC=0.854, F1=0.774) and maintained robustness on the external validation set. Furthermore, the classification efficacy of the optimal AI model surpassed that of experienced radiologists (highest physician AUC=0.678). Conclusion: Radiomics and deep-learning models based on multiparametric MRI features can effectively differentiate GCB from non-GCB subtypes of DLBCL. Among them, GP and DenseNet121 exhibit outstanding performance, especially when integrating multi-sequence feature sets for classifying DLBCL subtypes on complex imaging data.

Key words: Diffuse large B-cell lymphoma, Germinal center B-cell-like, Non-GCB, Radiomics, Deep learning

中图分类号: 

相关文章

[1] 彭东阁, 万子叶, 卢宁. 人工智能在胃癌诊疗和患者预后预测中的应用现状及未来展望[J]. 中国癌症杂志, 2025, 35(5): 496-504.
[2] 谭洪, 林圣庚, 熊毅. 人工智能赋能癌症协同药物组合预测的现状与挑战[J]. 中国癌症杂志, 2024, 34(9): 807-813.
[3] 黄浩哲, 陈红, 郑德重, 陈超, 王英, 许立超, 王耀辉, 何新红, 杨媛媛, 李文涛. 基于CT的影像组学诺模图预测结直肠癌肺转移射频消融后的局部肿瘤进展[J]. 中国癌症杂志, 2024, 34(9): 857-872.
[4] 庄晗, 胡伟刚, 章真, 王佳舟. 基于深度学习算法的病理学图片淋巴细胞浸润检测[J]. 中国癌症杂志, 2024, 34(4): 409-417.
[5] 刘琪, 常才, 李佳伟. 乳腺导管原位癌的影像学表现与分子分型、组织病理学分级及预后相关性的研究进展[J]. 中国癌症杂志, 2024, 34(2): 201-209.
[6] 傅圆圆, 侯润萍, 傅小龙. 基于胸部CT预测早期非小细胞肺癌淋巴道或血道转移风险的研究进展[J]. 中国癌症杂志, 2022, 32(4): 343-350.
[7] 陈光亮, 吴方恬, 曹军宁. 非特指EBV阳性弥漫大B细胞淋巴瘤的研究进展[J]. 中国癌症杂志, 2022, 32(3): 258-267.
[8] 董诗洁, 胡晓欣, 王 葳, 杨 孟, 岳 磊, 童 彤, 顾雅佳. 基于多序列MRI与多体系影像组学模型预测子宫颈癌淋巴结转移的研究[J]. 中国癌症杂志, 2021, 31(6): 460-467.
[9] 杨 鑫  , 章 真 . 基于深度学习的人工智能在数字病理学中的进展[J]. 中国癌症杂志, 2021, 31(2): 151-155.
[10] 李盼盼, 张 卓. 42例原发性中枢神经系统淋巴瘤患者预后影响因素分析[J]. 中国癌症杂志, 2021, 31(12): 1194-1201.
[11] 尤 超, 郑惠中, 姜婷婷, 简嘉豪, 范 明, 厉力华, 吴 炅, 顾雅佳, 彭卫军 . 基于影像组学对数字化乳腺断层摄影中肿块病变的鉴别诊断研究[J]. 中国癌症杂志, 2021, 31(12): 1162-1167.
[12] 张 艳, 唐 勇, 姚一芸, 邹丽芳, 窦红菊, 朱 琦. 头颈部弥漫大B细胞淋巴瘤患者临床特征及预后模型分析研究[J]. 中国癌症杂志, 2020, 30(6): 449-455.
[13] 王 平, 杨文秀, 周 杰, 冯江龙, 林超群. 弥漫大B细胞淋巴瘤中NF-κB/p65、PD-1、PD-L1表达相关性研究及其蛋白表达的临床意义[J]. 中国癌症杂志, 2020, 30(5): 375-382.
[14] 葛晓雯, 姚家美, 朱 娜, 栾丽娟, 高 峰, 曾海英, 纪 元, 谭云山, 侯英勇. Calreticulin在弥漫大B细胞淋巴瘤中的表达及临床意义[J]. 中国癌症杂志, 2020, 30(5): 347-354.
[15] 李梦蕾, 张 敬, 淡一波, 杨 光, 姚叶锋, 童 彤 . 术前预测结直肠癌淋巴结转移的临床-影像组学列线图的建立和验证[J]. 中国癌症杂志, 2020, 30(1): 49-56.